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ABSTRACT: The aim of this paper is to prove some coupled fixed point theorems for mapping having the
mixed monotone property in partially ordered metric spaces, which are generalization of the main results
of Bhaskar and Lakshmikantham [6], and Mizoguchi and Takahashis fixed point Theorem. In addition, the
existence and uniqueness for solution of periodic boundary value problem (PBVP) are studied.
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INTRODUCTION

Ran and Reurings initiated studying of fixed-point property on partial ordered sets in [14]. Where gave many
useful results in matrix equations. In establishing the existence of a unique solution to periodic boundary value
problem, authors in [12, 13], extend results of [14], and applied them to the periodic boundary value problem,
considering both monotone cases. Existence of a fixed point for contraction type mappings in partially ordered metric
spaces and applications have been considered recently by many authors (for more details see, [1, 2, 4, 8, 9]).

In [6], Bhaskar and Lakshmikantham have introduced notions of a mixed monotone mapping and a coupled fixed
point and proved some coupled fixed point theorems for mixed monotone mapping and discuss the existence and
uniqueness of solution for periodic boundary value problem.

Following definition coincides with the notion of a mixed monotone function on R , where < is the usual total
orderin R,
Definition 1.1
(O Let (X9 bea partially ordered set and F:XxX —X Mapping F is said to be has the mixed monotone
property if F(X’ y) is monotone nondecreasing in X and is monotone nonincreasing in y , that is, for every
x,yeX
1. for each X, X, € X  if X < X2, then F(Xl’ y)< F(XZ' y) ;
2. for each Y11 Y2 € X , if i=Ye , then F(xy)=F(xY,) .
¢ (X,d)

Let (X,9) be a partially ordered set and d pe a metric on X such tha is a complete metric space.

The product space X x X is endowed with the following partial order:
for (X, y),u,v)eXxX, UV)I(XY)<=>Xx>U, Y=<V

Definition 1.2
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() Let (X,9) be a partially ordered set and F:XxX =X anelement %¥) €XxX s said to be a coupled
fixed point of the mapping F  if F(X’ y) =X and F(y’ X) =X,

Gnana Bhaskar and Lakshmikantham in [6], proved the following important Theorem:

Theorem 1.3
[6, Theorem 2.1]Let (X9 pea partially ordered set and suppose that there exists a metric d on X such that

(X,d)

is a complete metric space. Let F:XxX =X be a continuous mapping having the mixed monotone

property on X . Assume that there exists a ke[0,1) with

d(F(x,y), F(U,V))Sg[d(x,u),d(y,v)],

forall XZU and Y=V |f there exist two elements 0’ Yo € X with
% <F(%: ¥o) and Y, =F(%y, ¥,)-

Then there exist XyeX such that
X=F(xy) and y=F(y,X).

Consistent with [11], let B(X) be the class of all nonempty bounded and closed subsets of X , and K(X)
be the class of all nonempty compact subsets of X Let H be the Hausdorff metric on B(X)
metric d of X and given by

H(A B) = max{supd(x, B),supd(y, A)}

XeA yeB
for every AB ECB(X). It is obvious that K(X) gCB(X)_
A point X € X s called a fixed point of a multivalued mapping T:X—>@B(X) it xeTX, Reich in [15], proved

that if (X,d) is a complete metric space and T:X—>CB(X)
H(TXTy) <a(d(x y))d(x y),
h XyeX a:[0,00 —[0,1)

induced by the

satisfies

lim sup, .+ () <1 for each £€(0:9)  then T has a fixed

point. Reich raised the question of whether K(X) can be replaced by B(X) in this result. In [10], Mizoguchi and
Takahashi gave a positive answer to the conjecture of Reich. Du in [5], proved some coupled fixed point results of
Mizoguchi and Takahashi’s type in partially quasiordered metric spaces. Other version of Mizoguchi and Takahashi’s
fixed point Theorem considered by Amini-Harandi and O’ Regan in [2].

Let @ be the family of all functions @:[0,00) >[0,0)
1 ¢8)=0<s=0.

2. ? is lower semicontinuous and nondecreasing;

for eac , wWhere such that

satisfying the following conditions:

. s
lim sup, ,—— <o

3. @(s)

Recently in [7], Gordji and Ramezani generalized the Mizoguchi and Takahashi Theorem for single-valued
mappings as follows:

Theorem 1.4
[7, Theorem 3.1]Let (X,9) be a partially ordered set and suppose that there exists a metric d on X such that

(X,d)
X €X

is a complete metric space. Let f:X—>X be an increasing mapping such that there exists an element

<
with X = f(XO). Suppose that there exists ped such that
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Pd(f (), F(y))<a(e(d(x ¥)))Ad(y.V))
for all % yeX and ysv such that X and y are comparable and that
lim su Poer a(s) < 1, for all te(0,0) . Assume that either f is continuous or X is such that the following holds:

. . . . <
if an increasing sequence {Xﬂ}_)x in X , then X —X, forall NEN,

a:[0,20) =>[0.1] s 4 function satisfying

Then f has a fixed point.

2. Coupled Fixed Point Theorems
In this section we give the main results of our paper.

Theorem 2.1
Let (X,d,=) be a partially ordered complete metric space, and let F:XxX — X be a continuous mapping

having the mixed monotone property on X Suppose that there exists pe® such that
Ad(F(x y), F(U,v))) < a{d (x u))edXd (y, v))AA (6 1) (g

for all XYUWVEX e XZU ang VSV ang that @009 —=[0.1] i 4 function satisfying

i . < . :
lim sup, .+ a(s) 1, for all £€(0:9) aAssume that either X has the following property:

<
1. if an increasing sequence {Xn}_)x, then X = X, forall NEN.

If there exist %0 Yo € X such that Xo < F(XO’ yO) and Yo = F(XO’ yO) . Then there exist %Y € X such that
x=F(xy) and y=F(y,x).
Proof. Since X< F(XO’ yO) and Yo= F(XO’ yO) , then we suppose that F(XO’ yO) = Xl, and F(XO’ yO) Y1 Now;
by this assumption, put X = F(Xl’ yl) and Y2 = F(yl’ Xl) . We denote
F2(%, Yo) = F(F (X, Yo), F (Yo %)) = F (%, Y1) = %,,

and

F2(Yo %) = F(F (Y0, %), F (X0, ¥6)) = F (Y1, %) = ¥s.

Therefore by the mixed monotone property of F , we have
X, = F* (%0, ¥o) = F 04, Y2) 2 F (%, Yo) = %4,

and

Yo = F2(Yor %) = F(Y1. %) < F (Yo, %) = Vi

For n:1,2,---, we let
Xon = F™ (%0, Yo) = F(F" (%, Yo), F" (Yo, %)),

and

Yo = F™ (¥, %) = F(F" (Y0: %), F" (%o Yo))-

By induction we obtain the following relations:

Xo < F (X, Yo) =% S F?(Xg, Vo) =%, <o SF™ (X, Yp) <+,

and
Yo 2 F(ymxo) =Y 2 FZ(yO’Xo) =Y, 2.2 I:nJrl(yo’Xo)Z"'

>
Then since an+1, and Yn = Yna for each NEN then by (2.1),
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P(d(F™ (%91 Yo), F™ (%1 Yo))) = 2(d (F(F™ (X, ¥6), F ™ (Y01 %)), F (F" (%, ¥0) F" (Y01 %:))))
<ap(d(F™ (%, Yo), F" (%, Yo))) (A (F ™ (Yo, %), F" (Yo %))

P(d(F™ (%, o), F" (%91 ¥o)))

< @(d(F™ (X1 Yo): F" (%01 Yo)))-

Similarly,

P(d(F™ (Yo, %), F™ (Y5, %))) = @(d (F(F™ (Y5, %), F " (%, ¥6)) . F (F" (Y6, %), F" (%1 ¥o))))
= @(d(F(F" (Yo, %), F" (%91 Yo)): F (F™ (Y0, %), F ™ (%5, ¥5))))

<alp(F" (Yo, %), F™ (Yo, X)) LA (F" (%, Yo), F ™ (%, ¥o)))]

P(d(F" (Y0, %), F™ (Y5, %))

<P(A(F" (Yo %) F™ (Y0, %))

= p(d(F™ (Yo, %), F" (Yor %)))-

Therefore YPAF™ (%0, o), F" (%0, YN} 4 g {PWA(F™ (%6, %), F" (Yo, %)} decreasing sequences.
These sequences are bounded below; thus

lim @(d(F™ (X, Yo), F" (X, ¥5))) =1 20,

n—oo

and
lim (A (F" (Y, %), F" (Yo, %,))) = ' 2 0.

rr'>0 a(r)<l 4 a(r)<1 r.r,e[0,1)

. By definition of &, we have . Therefore there exist
such that for all selrr +‘91) and s'elr’, r’+52) , a(s) < h and a(s) < r2. By taking N eN
r<o(d(F"* (%, Yo). F™* (%, ¥0)))< r+& gng 1S P(Ad(F™ (Yo, %), F™ (Yo X)) ST +&,

Suppose that

and &%~ 0

such that
Then

P(d(F™ (%, Y0), F™ (%01 ¥0))) = @(d (F(F™ (%91 o), F ™ (Y01 %)) F (F" (%o, o). F" (Yo, %))
<afe(d(F™ (X, Yo), F" (Xo» Yo)) ILo(d (F™ (Yo, %), F " (Yo, %))

P(d(F™ (%) ¥o), F" (%91 Yo)))

<nLe(d(F™ (X, ¥o), F" (%, o)), @

and similarly
PA(F™ (Yo, %), F™ (Yor %)) = @(d (F(F™ (Y5, %), F ™ (%, ¥6)),F (F" (Y5, %), F " (%, ¥o))))
= @(d(F(F" (Yo, %), F" (%91 Yo)): F (F™ (Y0, %), F ™ (%5, ¥5))))
<ap(F" (Yo, %), F™ (Yo, %)) (d (F" (%, Yo), F™ (%o, o)1
P(d(F" (Yo, %), F"™ (Yo, %))
< rlrzga(d(FnJrl(yo’ %), F" (Y01 %)) 3)

’ ’
r<nrr r'<nrr

> . . —-r' =
for every n= nO. Thus, by above relations we have and :these imply that =1 = 0 (note that

since 2 e[O’j')therefore hh ¢1).
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m+2 m+1 — n+2 n+l —
It is clear that if d(F™ (%, ¥0) . F™ (%0, ¥%0)) =0 for some MEN then d(F"" (%o, Yo).F (XO’yO))_Ofor

N=M This conclude that {F (XO’ yO)} is constant. Similarly for {F (yo’ XO)} we have it is constant. Thereupon
F hasa coupled fixed point.
Now: suppose that GCFT (%, ¥o), F™ 0%, ¥0)) %0y d(F™ (%0, %), F ™ (Yo %)) #0 1 oo neN.

since PAF™ (%0, ¥0) F™ (%, ¥0))) g PAF™ (Y0, %), F™ (Y0 %)) e decreasing and ? s

n+2 n+l
increasing, then there exist nonnegative numbers U and V such that d(F™ 0%, o). F™ (%, o)) and

d(sz(yOa Xo)’ Fm(yo’ Xo)) converge to them, respectively. By conditions on ? and these sequences we can
wite P =PAE™ 06, %) F™ 060, ¥0))) 4ng PV <AAF™ (Yo, %) F ™ (Y0 %)), for every NeN.
These imply

P(u) < lim p(d(F"™ (%, Yo). F" (%, o)) = r =0,
and

(V) < lim p(d(F"* (o, %), F" (%o, %)))= 1" =0.

Therefore U=V =0 By (2.2) and (2.3), we have

iﬁ”(d(FMl(XO! ¥o)s F" (X ¥o))) < Zoko(d(Fnﬂ(XOv ¥o)s F" (X0, Yo)))+

DR (A (F™ (%, Yo) . F© (%, Yo))) < o0,
na+1
and ’
S oA F™ (Yo, o) F" (Vo X)) < S oA (F ™ (Yo, Xo0) F ™ (¥, X))+

n=1 n=1

() A (o, 50) F (Yo, X)) < 0

Ny +1

Since
n+1 n
fim sup—2 (o ¥o). P70, ¥o))
nN—e (/J(d(F (xO,yO),F (Xo’yo))) s—0t
and

s
< lim sup—— <o,

»(s)

n+1 n
i sup G 00X F 0o X)) o0 S

n—>e (P(d(FM(yo’Xo)iFn(meO)))_SﬁOJr @(s)
then by Limit Comparison Test Theorem,

D A(F™ (% ¥o) F" (%, Yo)) < oo, and Y d(F™ (¥, %), F" (Yo, %)) < .
n=1 n=1

n n
These mean that the sequences {F 00 o)} and F (Vo %)} are Cauchy sequences. Since (X,d) is a

X, yeX

complete metric space, then there exist such that

im F (%, Yo) =% and fim F" (Y, %) =Y.

n—oo
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Finally, we claim F(xy)=x and F(y,x) = Y. (2) holds, then
P(d (%, F(x, y)))< lim inf p(d(F" (%), Yo),F (X, ¥)))

N—o0

= lim inf o(d (F(F" (X5, ¥0), F" (Yo, %)), F (X, ¥)))

Nn—oo

< lim Inf afop(d (F" (X5, Yo) . X)) Il o(d (F" (Yo, %5), ) Jo(d (F" (%5, Yo) 1 X))

n—oo
=0.
This implies that F(x.y)= X, Similarly we can show that F(y,x) = Y.

Let (X,9) be partially ordered set and suppose that there exists a metric d on X  Thenthe following statements
are equivalent:
* every pair of elements has a lower bound or an upper bound;

X,yeX

« for every there exists Z € X which is comparable to X and y .

Theorem 2.2

In addition to the hypothesis of Theorem 2.1, suppose that every pair of X has an upper bound or a lower bound
in X X=Yy
in & . Then .

Proof. If X is comparable to y , then x=F(xy) is comparable to y=F(y,%) and we get
Ad(x, y)) = @d(F(x, ¥), F(Y, X)))< al(Xd (X, y))edXd (y, X))))Ad (X, ¥))
this concludes that Ad(x,y))=0 thus X=y,
If X is not comparable to y , then there exists an upper or lower bound of X and y That is there exists a ZEX

comparable to X and y. Suppose that Xsz,y=z holds. Then we have F(xY)<F(zy) and

F,Y)2F(x2)  F)<FZX) gng FOGX2F(Y.2) | viked monotone property of F yields that
F Y <F™(@zy), F ) =F"(x2) F™(Y,)<F"(Z,%) ang F 0 2F(Y,2) These
Fx,z) =

( — — —
mean that F'z,x)=z, F'(y,X)= Y for n—1,2,..._ Then

Ad(z, F™(x,2)))=pd(F™(z,%),F" (% 2)))

=(d(F(F"(z,%),F"(x,2)),F(F"(x,2),F"(z,%))))

<AdAd(F"(z,%), F"(x 2))HAd(F" (X 2), F" (2, )N AA(F" (2. %), F" (%, 2)))

<Ad(F"(z.X),F" (% 2))=Ad(z,F" (X 2))). (4

Consequently, the sequence go(d(Z, Fn(x’ Z))):(p(d(Fnﬂ(Z’X)’FM(X’ Z))) is a nonnegative decreasing
sequence and hence possesses the limit 7' We claim that 7 = O. Suppose that v= O. Assume that

limsupa(s)<r, and limsupa(t) <r,.

S—y t—y

is comparable to

Then we have
y <limsup a(s) limsup a(t)y < Ry,

Sy toy

where R = max{r, r2}. This means that 7~ O. In the next step, we should show that

lim (d(z,F"(x,2)))=0

nN—o0
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If d(zF"(x2)))=0 for some MEN  then (d(z, F'(x2)))=0 for al N=M,
|Imn—>oo(d (Z’ Fn(x’ Z))): O

n
Suppose that d(Z, F (X’ Z))iO for all NEN _ since Ad(z,F(x 2))) is a monotone decreasing sequence and

It follows that

n
? s increasing, then {d(zF'(x2)} is a nonnegative and decreasing sequence and SO
- n —_
limn-(d(z, F"(x,2)))=r 20. But ¥ is lower semi continuous, then
o(r) <liminf ¢d(z,F"(x,2))=y =0

n—o0

Hence r = 0. Analogously, it can be proved that |imn—>°0d(y’ Fn(x’ Z)) - O. Finally,
d(z,y)<d(z,F"(x,2))+d(F"(x,2),y)
and taking as N —>C yields d(z,y)=0

3.Application To Ordinary Differential Equations
Consider the periodic boundary value problem (PBVP)

u' =h(tu), tel=[0T];
(3)
u(0)=u(T).

Where T>0 and fiIxR—>R is a continuous function. We assume that there exist continuous functions

f,g such that
h(t,u) = f (t,U)+g(t,u), t<[0T].

Existence of a unique solution to a periodic boundary value problem for mixed monotone mapping on partially
ordered metric spaces was studied in [6]. Also, recently this equation is considered for single-valued mappings in [7],
in case of generalization of Mizoguchi and Takahashi Theorem. In this section we study existence of solution to
equation (3).

C(1,R)

Consider the space of continuous functions defined on I :[O’T]. Obviously, this space with the metric

given by
d(x y) =sup] x®)—y®[:tel} (xyeC(l)),

is a complete metric space. The metric space C(1)
x,yeC(l), x<y=x@®)<yt) (tel).

can also equipped with a partial order given by

According to the Remark 3.3 of [6], every pair of elements of (C(I.R),<) has an upper bound or a lower bound in

(c ’R)’S). Also, C(1,R)=C(1,R) is a partially ordered set if we define the following order relation in C(1.R) :
X y) <(u,v) =<x@®)<u(),y®)>vt) (tel).
Also, C(I,R)=<C(I,R) is complete metric space by following meter:
D((%, y),(u,v)) =sup| x(t) —u(t) | +sup| yO) -v(t) | (X y,u,veC(l,R)).
tel tel
We recall the following definition from ([6, Definition 3.4]):
Definition 3.1
An element (o f) e Xx X is called a coupled lower and upper solution of the PBVP (3) if
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dO)<ft at)+9t. A1) and Ft)=f(t A1)+ o)),
together with the periodicity conditions,

a20)<(T) and  S(0)=A(T).

To prove of main result of this section we need to the following Lemma from [6]:

Lemma 3.2

If
A(a(F)—a(O))Mz(ﬂ(O)—ﬂ(F))SM;

and ©)
ﬂl(ﬂ(O)—ﬂ(F))MQ(a(F)—a(O))Sw, .

then a(t) = F(a(t)’ﬁ(t)) and ﬂ(t) = F(ﬂ(t)’a(t)), for te (O,T) . Where
F(u,v)(@t) = LTGl(t, s)[f(s,u)+9g(s,v)+A4u—AV]
+G,(t,s)[f (s,v) +9(s,u) + Av—Aulds. %

Now we ready to prove the following Theorem:

Theorem 3.3
2,>0

f,geC(IxRR) and suppose that there exist 4 >0 and such that

Consider the problem (3) with
for each WV ER yin u<v

0<(f(s,v)—f(s,u)+ A4 (v—u))+(g(s,v)—g(s,u) — A, (U—V))

< (Jy + 2, expP il e _y y -

Then the existence of a coupled lower and upper solution for (3), such (3.1) and (3.2) hold provides the existence
of a unique solution of (3).
Proof. Problem (3) is equivalent to the integral equations

U(t) = [ G,(,S)[F (5,) +9(5,\) +Au—AV]

+G,(t,s)[f (s,v)+g(s,u) + 4v—A,ulds 9)
and

V() = [ G (6 9IF (5:1)+g(s,u)+ Av—Aqul]
+G,(t,s)[f (s,u)+g(s,v)+A4u—Av]ds, (10)

where
(4 +2,)(t-s) (A —Ay)(t=5)
1l e e
2 <s<t<
2[1_ef(ﬂl+12)T +1_e(‘z*ﬁ1)T] 0<s<t<T
Gl (tv S) =
—(44+2,)(t=s+T) (=29 )(t=s+T)
1le e
5[ 1_p AT + Lot ] 0<t<s<T
and

836



J Nov. Appl Sci., 3 (8): 829-838, 2014

1 : U2~ A)ts) =l +ip)(t-s) :
2 1_e(/12—41)T 1_e—(ﬂl+/12)T
G,(t,s) =
(Ay=A7 )(t—s+T) (4 —Zl)(t—s+T)
1 e 271 e 2
< <
] Ostss<T

0<s<t<T

2
are Green functions (see [6]).
Define for L€ |

Fu,v@t) = J:Gl(t, S)[f (s,u)+g(s,v)+A4u—AV]
+G,(t,s)[f (s,v)+9(s,u)+ A4v—Aulds (11)

Note that if (u,v) is a coupled fixed point of F , we have
u) =Fu,v)t) and v(t)=F(W,u)@),

forall tel. Now, we verify that F satisfies the hypotheses of Theorems 2.1 and 2.2. The mapping F having the

mixed monotone property, because by (3.4), we have for (U, V) = (U, V)
F(u,v) () =IOTGl(LS)[f (s,u) +9(s,v) + AU, —4,V]
+G,(t,s)[f(s,v)+0g(s,u)+AVv—A4,u]ds
> [1Gy(t, S)[F (5.U,) + 9(5.V) + Al ~ A,V]
+G,(t,s)[f(s,v)+9(s,u,)+A4v—A,u,]ds
= F(u,,v)(),
and also for Uv)=(u,v,)
F(u,v)() = IOTGl(t,S)[f (s,u)+9(s,v;) +AU—A4V]
+G,(t,s)[f(s,v)+9(s,u)+A4v, —Au,]ds
> [1G,(t S)[F (5.U) + G(S.V,) + AU — 2]

+G,(t,s)[f(s,v,)+0g(s,u)+ A4V, —Aulds
= F(u,,Vv)().

Besides for (X’ y) s (U’V),
In(d(F(u,v),F(x,y))+1)=In(sup| F(u,v)t)—-F(x, y)t)|+1)

tel

= In(supl[ G,(t,5)([f (5.U) + 9(5.v) + AU~ 4]

=[5, X)+9(s, ) + Ax=2Ly])+G, (. $)([f (5,v) + 9(s,u) + AV — A4,U]
—[f (s, y)+9(s, )+ A4y —A4x])ds]+1)

= In(sUp[[; G, (6, 5)([F (5,u) + G(5.V) + A~ 2]

—[f(5,X)+9(s,y) + Ax=AY]) -G, (t,s)([f (s, y) + 9(s, X) + Ly = 4,X]
—[f(s,v)+g(s,u)+A4v—Au])ds]+1)

<In((4 +4,)(ex p|041n((§1‘$,¥,+vl)+1)|n(d(u,x)ﬂ)_l)
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.
SUp[, (G,(t,5) - G, (t,5))ds] +1)

te
=In((4 + %) (exp -1)
t e*(ﬂ:ﬁﬂg)(t*S) T e*(ﬂl+/12)(t—s+T)

el gt 4o+ | o a

lo ddn((;l’%ﬁ)ﬂ Nn(d(u,x)+1)

Iodd”{;’,(vﬁvf*”'”(d(”~X)*1)_1) 1
A+ A

lod{d(y )+ in(d@x)+1) _ Inin(d(u,x)+1).Inin(d(y,v)+1)

In(d(y,v)+1)

In(d(u,x)+1)

= In((4 +4,) (exp

+1)

=Inexp

_ Inin(d(u,x)+1) Inin(d(y,v)+1)
In(d(u,x)+1) ~ In(d(y,v)+1)
=a(In(d(u, X) +1))x(In(d(y,v) +1))In(d(u, x) +1)

_o(x)
— a(x)=—=
Put P(¥) =In(x+1) and X . By definition, ? isa continuous, increasing and positive function in (0’1),

with A0)=0 4nq

Finally, let (a, 'B) be a coupled upper and lower solution of equation (3). Then by Lemma 3.2, we have

at) <F(a®),50) and A1) =F(B(1),al)).

Then by application of Theorems 2.1 and 2.2, proof is complete.

lim sup, o0

s
> <
»(9) . Also & is satisfies in condition of Theorem 2.1.
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