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INTRODUCTION 

 
 Ran and Reurings initiated studying of fixed-point property on partial ordered sets in [14]. Where gave many 
useful results in matrix equations. In establishing the existence of a unique solution to periodic boundary value 
problem, authors in [12, 13], extend results of [14], and applied them to the periodic boundary value problem, 
considering both monotone cases. Existence of a fixed point for contraction type mappings in partially ordered metric 
spaces and applications have been considered recently by many authors (for more details see, [1, 2, 4, 8, 9]). 
In [6], Bhaskar and Lakshmikantham have introduced notions of a mixed monotone mapping and a coupled fixed 
point and proved some coupled fixed point theorems for mixed monotone mapping and discuss the existence and 
uniqueness of solution for periodic boundary value problem. 

 Following definition coincides with the notion of a mixed monotone function on ),( 2 R , where   is the usual total 
order in R .  
 
Definition 1.1  

 () Let ),( X  be a partially ordered set and XXXF : . Mapping F  is said to be has the mixed monotone 

property if ),( yxF  is monotone nondecreasing in x  and is monotone nonincreasing in 
y

, that is, for every 

Xyx , ,   

    1.  for each 
Xxx 21, , if 21 xx 

, then 
),(),( 21 yxFyxF 

;  

    2.  for each 
Xyy 21, , if 21 yy 

, then 
),(),( 21 yxFyxF 

.  

 Let ),( X  be a partially ordered set and d  be a metric on X  such that ),( dX  is a complete metric space. 

The product space XX   is endowed with the following partial order:  

 .,),(),(,),(),,(for vyuxyxvuXXvuyx   
 
 
 
Definition 1.2  
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 () Let ),( X  be a partially ordered set and XXXF : . An element XXyx ),(  is said to be a coupled 

fixed point of the mapping F , if xyxF =),(  and xxyF =),( .  
 
Gnana Bhaskar and Lakshmikantham in [6], proved the following important Theorem:  
 
Theorem 1.3  

 [6, Theorem 2.1]Let ),( X  be a partially ordered set and suppose that there exists a metric d  on X  such that 

),( dX  is a complete metric space. Let XXXF :  be a continuous mapping having the mixed monotone 

property on X . Assume that there exists a [0,1)k  with  

 

)],,(),,([
2

)),(),,(( vyduxd
k

vuFyxFd 
 

 for all ux   and 
vy 

. If there exist two elements 
Xyx 00,  with  

 
).,(and),( 000000 yxFyyxFx 

 

 Then there exist Xyx ,  such that  

 ).,(=and),(= xyFyyxFx  

 Consistent with [11], let )(XCB  be the class of all nonempty bounded and closed subsets of X , and )(XK  

be the class of all nonempty compact subsets of X . Let H  be the Hausdorff metric on )(XCB  induced by the 
metric d of X and given by  

 

)},(sup),,(sup{max=),( AydBxdBAH
ByAx   

 for every )(, XCBBA  . It is obvious that )()( XCBXK  . 

A point Xx  is called a fixed point of a multivalued mapping )(: XCBXT   if Txx . Reich in [15], proved 

that if ),( dX  is a complete metric space and )(: XCBXT   satisfies  

 ),,()),((),( yxdyxdTyTxH   

 for each Xyx , , where [0,1))[0,:   such that 
1<)(suplim r

tr
  for each )(0,t , then T  has a fixed 

point. Reich raised the question of whether )(XK  can be replaced by )(XCB  in this result. In [10], Mizoguchi and 
Takahashi gave a positive answer to the conjecture of Reich. Du in [5], proved some coupled fixed point results of 
Mizoguchi and Takahashi’s type in partially quasiordered metric spaces. Other version of Mizoguchi and Takahashi’s 
fixed point Theorem considered by Amini-Harandi and O’ Regan in [2]. 

Let   be the family of all functions )[0,)[0,:   satisfying the following conditions:   

    1.  0=0=)( ss  ;  

    2.  


 is lower semicontinuous and nondecreasing;  

    3.  




<
)(

suplim
0

s

s
s

 .  
 
 Recently in [7], Gordji and Ramezani generalized the Mizoguchi and Takahashi Theorem for single-valued 
mappings as follows:  
 
Theorem 1.4  

[7, Theorem 3.1]Let ),( X  be a partially ordered set and suppose that there exists a metric d  on X  such that 

),( dX  is a complete metric space. Let XXf :  be an increasing mapping such that there exists an element  

Xx 0  with 
)( 00 xfx 

. Suppose that there exists 


 such that  
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 )),(())),((())(),((( vydyxdyfxfd    

 for all Xyx ,  and 
vy 

 such that x  and 
y

 are comparable and that [0,1])[0,:   is a function satisfying 

1<)(suplim s
ts
 , for all )(0,t . Assume that either f  is continuous or X is such that the following holds: 

if an increasing sequence 
xxn }{

 in X , then 
xxn  , for all Nn . 

Then f  has a fixed point.  
 
2. Coupled Fixed Point Theorems 
 In this section we give the main results of our paper.  
 
Theorem 2.1  

 Let ),,( dX  be a partially ordered complete metric space, and let XXXF :  be a continuous mapping 

having the mixed monotone property on X . Suppose that there exists 


 such that  

 )),(())),((())),((())),(),,((( uxdvyduxdvuFyxFd    (1) 

 for all Xvuyx ,,, , where ux   and 
vy 

, and that [0,1])[0,:   is a function satisfying 

1<)(suplim s
ts
 , for all )(0,t . Assume that either X  has the following property:   

    1.  if an increasing sequence 
xxn }{

, then 
xxn  , for all Nn .  

 

If there exist 
Xyx 00,  such that 

),( 000 yxFx 
 and 

),( 000 yxFy 
. Then there exist Xyx ,  such that  

 ).,(=and),(= xyFyyxFx  

Proof. Since 
),( 000 yxFx 
 and 

),( 000 yxFy 
, then we suppose that 100 =),( xyxF

, and 100 =),( yyxF
. Now; 

by this assumption, put 
),(= 112 yxFx
 and 

),(= 112 xyFy
. We denote  

 
,=),(=)),(),,((=),( 211000000

2 xyxFxyFyxFFyxF
 

 and  

 
.=),(=)),(),,((=),( 211000000

2 yxyFyxFxyFFxyF
 

 

Therefore by the mixed monotone property of F , we have  

 
,=),(),(=),(= 1001100

2

2 xyxFyxFyxFx 
 

 and  

 
.=),(),(=),(= 1001100

2

2 yxyFxyFxyFy 
 

 

For 1,2,=n , we let  

 
)),,(),,((=),(= 000000

1

1 xyFyxFFyxFx nnn

n



  
 and  

 
)).,(),,((=),(= 000000

1

1 yxFxyFFxyFy nnn

n



  
 
By induction we obtain the following relations:  

 
,),(...=),(=),( 00

1

200

2

1000   yxFxyxFxyxFx n

 
 and  

 
.),(...=),(=),( 00

1

200

2

1000   xyFyxyFyxyFy n

 

Then since 1 nn xx
, and 1 nn yy

, for each Nn , then by (2.1),  
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)))),(),,(()),,(),,((((=))),(),,((( 000000

1

00

1

00

1

00

2 xyFyxFFxyFyxFFdyxFyxFd nnnnnn  
 

 
)))],(),,((([)))],(),,((([ 0000

1

0000

1 xyFxyFdyxFyxFd nnnn  
 

 
))),(),,((( 0000

1 yxFyxFd nn
 

 
))).,(),,((( 0000

1 yxFyxFd nn
 

 
Similarly,  

 
)))),(),,(()),,(),,((((=))),(),,((( 000000

1

00

1

00

1

00

2 yxFxyFFyxFxyFFdxyFxyFd nnnnnn  
 

 
)))),(),,(()),,(),,((((= 00

1

00

1

0000 yxFxyFFyxFxyFFd nnnn 
 

 
)))],(),,((([)))],(),,(([ 00

1

0000

1

00 yxFyxFdxyFxyF nnnn  
 

 
))),(),,((( 00

1

00 xyFxyFd nn 
 

 
))),(),,((( 00

1

00 xyFxyFd nn 
 

 
))).,(),,(((= 0000

1 xyFxyFd nn
 

 

Therefore 
)))},(),,((({ 0000

1 yxFyxFd nn
 and 

)))},(),,((({ 0000

1 xyFxyFd nn
 are decreasing sequences. 

These sequences are bounded below; thus  

 
0,=))),(),,(((lim 0000

1 



ryxFyxFd nn

n


 

 and  

 
0.=))),(),,(((lim 0000

1 



rxyFxyFd nn

n


 

 

Suppose that 0>,rr 
. By definition of  , we have 1<)(r  and 1<)(r . Therefore there exist 

[0,1), 21 rr
, 

and 
0>, 21 

 such that for all 
),[ 1 rrs
 and 

),[ 2 rrs
, 1)( rs 

 and 2)( rs 
. By taking 

N0n
 

such that 100

1

00

2 ))),(),,(((    ryxFyxFdr nn

, and 200

1

00

2 ))),(),,(((    rxyFxyFdr nn

. 
Then  

 
)))),(),,(()),,(),,((((=))),(),,((( 000000

1

00

1

00

1

00

2 xyFyxFFxyFyxFFdyxFyxFd nnnnnn  
 

 
)))],(),,((([)))],(),,((([ 0000

1

0000

1 xyFxyFdyxFyxFd nnnn  
 

 
))),(),,((( 0000

1 yxFyxFd nn
 

 
))),,(),,((( 0000

1

21 yxFyxFdrr nn 
 (2) 

 and similarly  

 
)))),(),,(()),,(),,((((=))),(),,((( 000000

1

00

1

00

1

00

2 yxFxyFFyxFxyFFdxyFxyFd nnnnnn  
 

 
)))),(),,(()),,(),,((((= 00

1

00

1

0000 yxFxyFFyxFxyFFd nnnn 
 

 
)))],(),,((([)))],(),,(([ 00

1

0000

1

00 yxFyxFdxyFxyF nnnn  
 

 
))),(),,((( 00

1

00 xyFxyFd nn 
 

 
))),(),,((( 0000

1

21 xyFxyFdrr nn 
 (3) 

 for every 0nn
. Thus, by above relations we have 

rrrr 21
 and 

rrrr  21 ; these imply that 0== rr   (note that 

since 
[0,1), 21 rr

 therefore 
121 rr

). 
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It is clear that if 
0=)),(),,(( 00

1

00

2 yxFyxFd mm 

 for some Nm , then 
0=)),(),,(( 00

1

00

2 yxFyxFd nn 

 for 

mn  . This conclude that 
)},({ 00 yxFn

 is constant. Similarly for 
)},({ 00 xyFn

 we have it is constant. Thereupon 

F  has a coupled fixed point. 

Now; suppose that 
0)),(),,(( 00

1

00

2  yxFyxFd nn

 and 
0)),(),,(( 00

1

00

2  xyFxyFd nn

 for each Nn . 

Since 
))),(),,((( 00

1

00

2 yxFyxFd nn 
 and 

))),(),,((( 00

1

00

2 xyFxyFd nn 
 are decreasing and 


 is 

increasing, then there exist nonnegative numbers u  and v  such that 
)),(),,(( 00

1

00

2 yxFyxFd nn 

 and 

)),(),,(( 00

1

00

2 xyFxyFd nn 

 converge to them, respectively. By conditions on 


 and these sequences we can 

write 
))),(),,((()( 00

1

00

2 yxFyxFdu nn 
 and 

))),(),,((()( 00

1

00

2 xyFxyFdv nn 
, for every Nn . 

These imply  

 
0,==))),(),,(((lim)( 00

1

00

2 ryxFyxFdu nn

n





 
 

 and  

 
0.==))),(),,(((lim)( 00

1

00

2 rxyFxyFdv nn

n

 




 

 

Therefore 0==vu . By (2.2) and (2.3), we have  

 

 


 ))),(),,((())),(),,((( 0000

1
0

1=

0000

1

1=

yxFyxFdyxFyxFd nn

n

n

nn

n



 

 

,<))),(),,((()( 00
0

00

1
0

21

1
0








 yxFyxFdrr
nnn

n



 
 and  

 

 


 ))),(),,((())),(),,((( 0000

1
0

1=

0000

1

1=

xyFxyFdxyFxyFd nn

n

n

nn

n



 

 

.<))),(),,((()( 00
0

00

1
0

21

1
0








 xyFxyFdrr
nnn

n



 
 
Since  

 

,<
)(

suplim
))),(),,(((

)),(),,((
suplim

00000

1

0000

1








 s

s

yxFyxFd

yxFyxFd

s
nn

nn

n 
 

 and  

 

,<
)(

suplim
))),(),,(((

)),(),,((
suplim

00000

1

0000

1








 s

s

xyFxyFd

xyFxyFd

s
nn

nn

n 
 

 then by Limit Comparison Test Theorem,  

 

.<)),(),,((and,<)),(),,(( 0000

1

1=

0000

1

1=

 





 xyFxyFdyxFyxFd nn

n

nn

n  
 

These mean that the sequences 
)},({ 00 yxFn

 and 
)},({ 00 xyFn

 are Cauchy sequences. Since ),( dX  is a 

complete metric space, then there exist Xyx ,  such that  

 
.=),(limand,=),(lim 0000 yxyFxyxF n

n

n

n   
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Finally, we claim xyxF =),(  and yxyF =),( . If (1) holds, then  

 
))),(),,(((inflim))),(,(( 00

1 yxFyxFdyxFxd n

n





 
 

 
))),()),,(),,((((inflim= 0000 yxFxyFyxFFd nn

n


  

 
))),,((())]),,((([))]),,((([inflim 000000 xyxFdyxyFdxyxFd nnn

n





 

 0.=  

This implies that xyxF =),( . Similarly we can show that yxyF =),( .  
 

Let ),( X  be partially ordered set and suppose that there exists a metric d  on X . Then the following statements 
are equivalent:   
    • every pair of elements has a lower bound or an upper bound;  

    • for every Xyx ,  there exists Xz  which is comparable to x  and 
y

.  
  
Theorem 2.2  

 In addition to the hypothesis of Theorem 2.1, suppose that every pair of X  has an upper bound or a lower bound 

in X . Then 
yx =

.  
  

Proof. If x  is comparable to 
y

, then ),(= yxFx  is comparable to ),(= xyFy  and we get  

 )),(()))),((()),((())),(),,(((=)),(( yxdxydyxdxyFyxFdyxd    

this concludes that 0=)),(( yxd  thus 
yx =

. 

If x  is not comparable to 
y

, then there exists an upper or lower bound of x  and 
y

. That is there exists a Xz  

comparable to x  and 
y

. Suppose that 
zyzx   , 

 holds. Then we have ),(),( yzFyxF   and 

),(),( zxFyxF   , ),(),( xzFxyF   and ),(),( zyFxyF  . Mixed monotone property of F  yields that 

),(),( 11 yzFyxF nn   , ),(),( 11 zxFyxF nn   , ),(),( 11 xzFxyF nn    and ),(),( 11 zyFxyF nn   . These 

mean that =),( zxF  is comparable to yxyFzxzF n =),(  ,=),(

 for 1,2,=n . Then 
 

 ))),(),,(((=))),(,(( 111 zxFxzFdzxFzd nnn    

 )))),(),,(()),,(),,((((= xzFzxFFzxFxzFFd nnnn  

 ))),(),,((()))],(),,((([)))],(),,((([ zxFxzFdxzFzxFdzxFxzFd nnnnnn   

 ))).,(,((=))),(),,((( zxFzdzxFxzFd nnn   (4) 

 Consequently, the sequence ))),(),,(((=))),(,(( 11 zxFxzFdzxFzd nnn   is a nonnegative decreasing 

sequence and hence possesses the limit 


. We claim that 0= . Suppose that 0> . Assume that  

 

.)(limsupand)(limsup 21 rtrs
ts





  

 
Then we have  

 

,<)(limsup)(limsup 


Rts
ts 



 

 where 
},{max= 21 rrR

. This means that 0= . In the next step, we should show that  

 
0=))),(,((lim zxFzd n

n   
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If 0=))),(,(( zxFzd m

 for some Nm , then 0=))),(,(( zxFzd n

 for all mn  . It follows that 

0=))),(,((lim zxFzd n
n  . 

Suppose that 0)),(,( zxFzd n

 for all Nn . Since ))),(,(( zxFzd  is a monotone decreasing sequence and 


 is increasing, then ))},(,({ zxFzd n

 is a nonnegative and decreasing sequence and so 

0.=))),(,((lim  rzxFzd n
n  But 


 is lower semi continuous, then  

 
0==)),(,(liminf)(  zxFzdr n

n 


 

Hence r = 0. Analogously, it can be proved that 0=)),(,(lim zxFyd n
n  . Finally,  

 )),,(()),(,(),( yzxFdzxFzdyzd nn   

 and taking as n  yields 0=),( yzd   
  
3.Application To Ordinary Differential Equations 
 Consider the periodic boundary value problem (PBVP) 
 

 






 

).(=(0)

(3)

];[0,=),,(=

Tuu

TItuthu

 

 Where 0>T  and RRIf :  is a continuous function. We assume that there exist continuous functions 

gf ,  such that  

 ].[0,),,(),(=),( Ttutgutfuth   
 
 Existence of a unique solution to a periodic boundary value problem for mixed monotone mapping on partially 
ordered metric spaces was studied in [6]. Also, recently this equation is considered for single-valued mappings in [7], 
in case of generalization of Mizoguchi and Takahashi Theorem. In this section we study existence of solution to 
equation (3). 

Consider the space ),( RIC  of continuous functions defined on ][0,= TI . Obviously, this space with the metric 
given by  

 )),(,(}|:)()({|sup=),( ICyxIttytxyxd   

 is a complete metric space. The metric space )(IC  can also equipped with a partial order given by  

 ).()()(  ),(, IttytxyxICyx   
 

According to the Remark 3.3 of [6], every pair of elements of )),,(( RIC  has an upper bound or a lower bound in 

)),,(( RIC . Also, ),(),( RR ICIC   is a partially ordered set if we define the following order relation in ),( RIC :  

 ).()()(),()(),(),( Ittvtytutxvuyx   

 Also, ),(),( RR ICIC   is complete metric space by following meter:  

 

)).,(,,,(|)()(|sup|)()(|sup=)),(),,(( RICvuyxtvtytutxvuyxD
ItIt


  

 
We recall the following definition from ([6, Definition 3.4]):  
 
Definition 3.1  

 An element XX),(   is called a coupled lower and upper solution of the PBVP (3) if  
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 )),(,())(,()(and))(,())(,()( ttgttftttgttft  
 

 together with the periodicity conditions,  

 ).((0)and)((0) TT    
 To prove of main result of this section we need to the following Lemma from [6]:  
 
Lemma 3.2  
 If  

 

;
(0))(

))((0)((0)))(( 21
T

T
TT







 (5) 
 and  

 

,
)((0)

(0)))(())((0)( 21
T

T
TT







 (6) 
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Now we ready to prove the following Theorem:  
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 Then the existence of a coupled lower and upper solution for (3), such (3.1) and (3.2) hold provides the existence 
of a unique solution of (3).  
  
Proof. Problem (3) is equivalent to the integral equations  
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are Green functions (see [6]). 

Define for It   
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Note that if ),( vu  is a coupled fixed point of F , we have  
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 is a continuous, increasing and positive function in (0,1), 
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Finally, let ),(   be a coupled upper and lower solution of equation (3). Then by Lemma 3.2, we have  

 )).(),(()(and))(),(()( ttFtttFt    
 
Then by application of Theorems 2.1 and 2.2, proof is complete. 
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